跳转到主要内容
首页

主菜单

  • 首页
  • 硬件
    • 产品概览
      • 芯片
      • 模组
      • 开发板
        • Espressif
        • M5Stack
      • 配件
      • 产品选型工具
    • ESP32-Wrap
      • ESP32-P
        • ESP32-P4
      • ESP32-S
        • ESP32-S3
        • ESP32-S2
      • ESP32-C
        • ESP32-C6
        • ESP32-C61
        • ESP32-C5
        • ESP32-C3
        • ESP32-C2
      • ESP32-H
        • ESP32-H2
      • ESP32
        • ESP32
      • ESP8266
        • ESP8266
  • SDK
    • ESP-IDF
      • IDF 组件管理工具
    • ESP-Matter SDK
    • Zephyr® for Espressif
    • ESP-Arduino
    • ESP-AT
      • 概览
      • 资源
    • ESP-HOSTED
    • ESP-ADF
    • ESP-Mesh-Lite
    • ESP HomeKit SDK
    • ESP-BLE-MESH
  • 云产品
    • Special Menu
      • ESP RainMaker®
      • ESP Insights
    • Cloud Menu
      • ESP RainMaker®
        • 产品主页
        • 产品简介
        • 技术博客
        • 客户成功案例
      • ESP Insights
        • 产品主页
        • 技术博客
        • 快速开始
        • 管理看板
      • 云服务
        • 技术维护 & 功能迭代
        • 工具支持
        • 方案咨询 & 定制
      • 开发资源
        • 快速开始
        • GitHub 仓库
        • 客户端 APP
          • Nova Home(可提供源码)
          • ESP RainMaker(完全开源)
        • 管理看板(公版)
      • 方案融合
        • Matter Fabric
        • ESP-Mesh-Lite
        • AWS IoT ExpressLink
  • 方案
    • Special Menu
      • 全面的 Matter 方案
      • 产品安全
    • Solutions Menu
      • 设备连接
        • 设备远程调试平台 (ESP Insights)
        • ACK 方案 (Alexa Connect Kit)
        • ACS 方案 (Amazon Common Software)
        • ESP AWS IoT ExpressLink 方案
      • 低功耗方案
        • 无线通信协议 (ESP-NOW)
        • Wi-Fi 单火线智能开关方案
      • HMI 人机交互
        • HMI 智能屏
      • 智能音频
        • 乐鑫声学前端算法 (ESP AFE)
      • AI 方案
        • AI 大模型
          • 豆包大模型 LLM 方案
        • 人脸检测 (ESP-WHO)
        • 语音助手 (ESP-SR)
          • 概览
          • 资源
      • 外设接口
        • 常用外设
        • USB 方案
  • 支持
    • 技术文档
      • 所有类型
      • 芯片
      • 模组
      • 开发板
      • 配件
    • 服务
      • 自助式资源
      • 开源软件
      • 硬件 & 射频设计审阅
      • 云服务
      • 认证支持
      • 生产制造
      • 现场协助
    • 下载
      • 技术文档
      • SDK 和 Demo
      • APP
      • 工具
      • ESP-AT
    • 质量与可靠性
      • 证书 & 环境合规
      • PCN
      • 公告
      • 供货保证
      • 出口合规
      • ISO 认证
    • 常见问题
      • 常见问题汇总
      • 商务常见问题
  • 生态
    • 合作与资源
      • AWS 高级技术合作伙伴
      • 合作伙伴
      • 第三方 SDK
    • 大学计划
      • 乐鑫大学计划
      • 大学生物联网竞赛
    • 开发者社区
      • 乐鑫开发者门户
      • 乐鑫开发者大会
      • M5Stack
      • 技术文章
      • ESP32 论坛
    • 社区资源
      • 课程
      • Rust
      • 书籍
      • 视频
      • 项目
      • 博客
  • 公司
    • 关于我们
      • 关于乐鑫
      • 里程碑
      • CEO 致辞
      • Logo 使用规范
    • 媒体
      • 新闻
      • 新闻月刊
      • 技术文章
      • 活动
    • 投资者关系
      • 定期报告
      • 投资者活动
      • 投资者交流记录
      • 投资者咨询
    • 企业社会责任
      • 社会责任报告
      • 野生物种保护
    • 加入我们
      • 乐鑫职业机会
      • 发现心仪岗位
  • 联系
    • 联系乐鑫商务
    • 联系经销商
    • 原理图 & PCB 设计审阅
    • 技术支持
    • 购买样品
    • 成为供应商
    • 意见与建议

搜索表单

搜索
  • 简体中文
  • English
  • 日本語
邮件订阅
  • 发现心仪岗位

你在这里

首页 » 公司 » 加入我们 » 星光本科人才计划
实习招聘
-日常实习
-领跑者计划
校园招聘
-2026 届校园招聘
-星光计划
社会招聘
3 Jobs Found
找到 3 个职位
  • AI SDK & Framework Engineer
    2026 届校园招聘
    人工智能
    • 中国
      • 上海
    • 新加坡
      • 新加坡
    2025年12月25日

    The Opportunity

    You will make our high-performance AI silicon accessible to the world. While the Runtime team builds the engine, you build the steering wheel. You will develop the Python SDK, integrating our C++ runtime into ecosystems like PyTorch, ONNX, or IREE. You define how data scientists interact with our chip—from "import aisoc" to running real-world LLMs and vision models end-to-end on our device.

     

    Key Responsibilities

    ·       Python/C++ Bridging: Build efficient bindings (using pybind11) that allow Python users to drive our low-level C++ Runtime and memory allocator with minimal overhead and zero-copy where possible.

    ·       Model Ingestion: Build practical model import tools: weight packing/layout transforms, graph partitioning to supported ops, and integration with existing quantization/calibration workflows.

    ·       Developer Experience (DX): Ensure that when a user makes a mistake, they get a helpful Python exception, not a silent segmentation fault.

    ·       Golden Reference Examples: Build and maintain the "Hello World" and "Chatbot" demos that verify the entire hardware/software stack is functioning correctly.

     

    What We Will Teach You

    ·       The internals of modern ML frameworks (how PyTorch dispatch works, how ONNX graphs are structured).

    ·       How to build and ship Python wheels and native extensions for our target runtime environment (Embedded Linux).

    ·       Techniques for zero-copy memory sharing between Python (numpy) and hardware accelerators.

     

    Must-Have Qualifications

    ·       Strong proficiency in Python (you understand decorators, context managers, and the Global Interpreter Lock).

    ·       Working knowledge of C++ (you can read a header file and understand what needs to be exposed to Python).

    ·       Familiarity with ML Data Structures: You know that a "Tensor" is just a pointer to memory with shape and stride metadata.

     

    Nice-to-Have (We Value Projects!)

    ·       Experience with ONNX Runtime, TVM, or MLIR.

    ·       Experience building Python wheels or C-extensions (pybind11, Cython).

    Apply Now
    campus@espressif.com
  • AI Kernel & Performance Engineer
    2026 届校园招聘
    人工智能
    • 中国
      • 上海
    • 新加坡
      • 新加坡
    2025年12月25日

    The Opportunity

    You will be the reason our chip is fast. You will write the hand-tuned kernels that power Large Language Models (LLMs) on our custom RISC-V hardware. You will work directly with hardware architects to exploit our proprietary Matrix (RVM) and Vector (RVV) extensions, squeezing every last FLOP out of the silicon.

     

    Key Responsibilities

    ·       Kernel Implementation: Write kernels for GEMM and common epilogues (bias/activation/quant); implement Softmax/RMSNorm; evolve toward attention kernels as the project matures.

    ·       Micro-Optimization: Analyze assembly output. Did the compiler unroll the loop? Did we stall on a memory load? You fix it.

    ·       Tiling & Layout: Calculate the optimal way to chop a large tensor into "tiles" that fit in our L1 cache/TCM.

    ·       Benchmarking: Build the "speedometer" for the chip. Prove your kernel is faster than the baseline.

     

    What We Will Teach You

    ·       Our proprietary RVM (Matrix) and RVV (Vector) intrinsic APIs.

    ·       How to use our cycle-accurate profilers and hardware counters.

    ·       The specific memory hierarchy constraints of our AI SoC.

     

    Must-Have Qualifications

    ·       Strong C/C++ skills, specifically with a math/logic focus.

    ·       Understanding of Computer Architecture basics: Registers, Cache Hierarchy (L1/L2), SIMD (Single Instruction Multiple Data).

    ·       Comfortable reading/writing technical documentation (Instruction Set Architecture specs).

     

    Nice-to-Have

    ·       Experience with CUDA, OpenMP, or AVX/Neon intrinsics.

    ·       Coursework in Linear Algebra or Numerical Methods.

    Apply Now
    campus@espressif.com
  • AI System Software Engineer (Runtime & HAL)
    2026 届校园招聘
    人工智能
    • 中国
      • 上海
    • 新加坡
      • 新加坡
    2025年12月25日

    The Opportunity

    You will build the heartbeat of our AI accelerator. While our compilers generate the "what" (the neural network graph), the Runtime determines the "how" (execution). You will write the low-level C/C++ code that manages DMA engines, synchronizes parallel cores, and drives high utilization on our 4-PE AISoC while maintaining correctness and stability.

     

    Key Responsibilities

    ·       Pipeline Orchestration: Implement the on-device scheduler that coordinates data transfers (DMA) and compute tasks. You will solve classic "producer-consumer" problems in silicon.

    ·       Memory Management: Build the allocator that manages tight on-chip SRAM (TCM). You decide where every tensor lives and when it dies.

    ·       Hardware Abstraction (HAL): Implement the low-level HAL and intrinsic wrappers used by our runtime and kernel library (no kernel-mode driver experience required).

    ·       Consistency & Visibility: Define and enforce explicit memory visibility protocols between cores/TCM/DMA (clean/flush + fence/events) to prevent stale data reads on our non-coherent system.

    ·       Debug & Profiling: Create the tools that tell us why the chip is stalling (trace markers, cycle counters).

     

    What We Will Teach You

    ·       Our specific DMA descriptor model and event synchronization hardware.

    ·       How to manage memory visibility (cache maintenance) on a non-coherent architecture.

    ·       The internal workings of our on-device scheduling framework.

     

    Must-Have Qualifications

    ·       Strong proficiency in C/C++ (you understand pointers, memory layout, and the stack vs. heap).

    ·       Academic or project experience with Operating Systems concepts (mutexes, race conditions, context switching).

    ·       Fearlessness in debugging: You don't just stare at a segfault; you attach a debugger and find the root cause.

     

    Nice-to-Have

    ·       Experience with embedded systems (Raspberry Pi, STM32, or bare-metal RISC-V).

    ·       Knowledge of Python (for building test scripts to drive your C++ runtime).

    Apply Now
    campus@espressif.com

订阅乐鑫动态

及时获取有关 AIoT 行业创新、产品上市、市场活动、文档更新、PCN 通知、软硬件公告等最新信息。

  • 产品
  • 芯片
  • 模组
  • 开发板
  • 产品选型工具
  • 开发者社区
  • 乐鑫开发者门户
  • 乐鑫开发者大会
  • 技术文章
  • 新闻
  • 公司
  • 关于我们
  • Logo 使用规范
  • 商务联系
  • 乐鑫职业机会
  • 资源
  • 技术文档
  • GitHub
  • 常见问题
  • 购买样品
  • wechat

    关注官方服务号

    关注乐鑫董办号

    关注微信招聘号

  • bilibili
  • zhihu
  • CSDN
  • linkdin
  • github
  • M5Stack

Copyright © 2026 乐鑫信息科技(上海)股份有限公司。版权所有。

沪公网安备 31011502019094 号

沪ICP备2021026420号
  • 服务协议
  • 隐私政策
690 Bibo Road Block 2 Suite 204, Zhangjiang Shanghai, China

语言

  • English
  • 简体中文
  • 日本語
/